
A Tutorial on Geometric Deep Learning & Graph Neural Networks

Semi-Supervised Classification with Graph Convolutional
Networks
Thomas N. Kipf, Max Welling (ICLR 2017)

By Prachi Garg, Vision for Mobility Reading Group
September 9, 2020

https://arxiv.org/search/cs?searchtype=author&query=Kipf%2C+T+N
https://arxiv.org/search/cs?searchtype=author&query=Welling%2C+M

● Euclidean geometry
○ Most commonly known and studied geometry
○ Geometry of flat surfaces

● 3 main properties that distinguish it from non-Euclidean geometry:
○ Parallel Postulate - Defines the nature of parallel lines

■ Given a line and a point, there is only one other line that you can draw though the point that will be parallel to the
original line. Non-Euclidean geometry doesn’t follow the parallel postulate

○ In Euclidean geometry, the interior angles of triangles always add up to 180 degrees
○ Shortest distance between 2 points is a straight line joining the two points.

● Most common non-Euclidean geometries - spherical geometry, elliptic geometry and hyperbolic geometry
● Image, text, audio, video data fall under euclidean data
● Arbitrary structured graphs fall under the category of non-Euclidean data

Example - A non-inflated balloon is a flat object governed by Euclidean geometry. Now inflate the same balloon, its surface is no longer
flat, we need non-Euclidean geometry to define it.

Euclidean vs non-Euclidean Geometry

Arbitrary structured graphs and manifolds are ubiquitous and form the backbone of several real-world application

Graph-structured data

Traditional approaches for modeling graphs

Graph embedding techniques -

● Convert graphs into euclidean form and use traditional
ML, DL models

● Employs a class of graph pre-processing techniques,
turn a graph into a computationally digestible format for
the ML model while trying to preserve graph structure
and data

● Some of these techniques:
○ DeepWalk [link]
○ Node2Vec [link]
○ Graph2Vec [link]
○ Large-scale Information Network Embedding

(LINE) [link]
○ Structural Deep Network embedding (SDNE)

[link]

Pitfalls of traditional techniques

These approaches rely on summary graph statistics (e.g. degrees
or clustering coefficients), kernel functions, or hand designed
features to measure local neighborhood structures.

1. Expensive and Inflexible - Use Hand designed features,
can’t dynamically adapt to heterogeneous graphs with
different types and sizes

2. Not generalisable (transductive) across problem statements
and application domains or even new graphs

3. Scalability - Many random walks approaches use shallow
models that can’t scale well to more complicated and
large-scale graphs

4. Compromise on the rich topological relationships in the graph

5. Computationally inefficient - No parameter sharing between
nodes

https://arxiv.org/abs/1403.6652
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf
https://arxiv.org/abs/1707.05005
https://arxiv.org/abs/1503.03578#:~:text=The%20algorithm%20is%20very%20efficient,the%20LINE%20is%20available%20online.
https://www.kdd.org/kdd2016/papers/files/rfp0191-wangAemb.pdf

Representation learning methods like deep learning can overcome each pitfall

Main idea is to be able to process the graph as it is, in its original form along with its rich structural information without any conversions.

Desirable properties for a neural network layer that can process a graph:

● Computational and storage efficiency (requiring no more than O(V + E) time and memory);
● Fixed number of parameters (independent of input graph size);
● Localisation (acting on a local neighbourhood of a node);
● Ability to specify arbitrary importance to different neighbours;
● Applicability to inductive problems (arbitrary, unseen graph structures).

Why deep learning over graphs? Taking inspiration from CNNs

Geometric Deep Learning

Generalisation of deep learning to non-Euclidean data, using deep neural networks to model arbitrary structured graphs and manifolds

Layer wise forward propagation - in the form of neighbourhood aggregation for each node in the graph
Use some form of message passing to aggregate information from the neighbours and use the inter-node relationships

Geometric deep learning and Graph Neural Networks

Similarity with CNNs

Graph Convolutional Network

Given Graph G = (V, E)
Input: Input feature matrix X (a N x D feature matrix)

Adjacency Matrix - A ∈ RNxN containing the graph structural information
Output: Z, NxF feature matrix where F is the number of output classes

Layer wise propagation rule:

1. Self Loop
2. Normalization - each node will have

different number of neighbours, So
normalise A by taking (D-1 A) where
D is the diagonal node degree
matrix.

Graph Convolutional Network

Successive application of filters of this form then effectively convolve the Kth-order neighborhood of a node,
where k is the number of successive filtering operations or convolutional layers in the neural network model.

Datasets and Results

Graph Convolutional Network

Pytorch Implementation

https://github.com/tkipf/pygcn

Layers.py

Graph Convolutional Network

models.py

Graph Convolutional Network

Illustrative example of power of GNNs - Zachary’s
karate club network

This graph contains 34 nodes, connected by 154 (undirected and
unweighted) edges. Every node is labeled by one of four classes.

Training setting

● Semi-supervised learning, taking 1 labeled sample per
class

● Use a 3 layer GCN, randomly initialised weights

Figure 4 shows how the GCN can learn powerful feature
embeddings for the nodes.

It separates the 4 communities using minimal supervision and the
graph structure alone.

Graph Convolutional Network

Induction

● “Induce” rules, characteristics and patterns from the data to learn a model that will work on new inputs
● Result of inductive learning is a function that maps inputs to outputs
● Get good generalisation on unseen samples

Transduction

● Use the training data to make accurate predictions on the specified set of unlabelled instances
● It streamlines and focuses the process for a small set of target instances instead of trying to build a ‘general’ or universal model.

“When solving a problem of interest, do not solve a more general problem as an intermediate step. Try to get the answer that you really
need but not a more general one.” - Vladimir Vapnik

GCN - Transductive approach, train-test data are parts of the same graph
GAT - Can be used for Inductive learning, Eg. on the PPI dataset: train-test data are 2 separate graphs

GCN - can’t have directed edges and edge features
GAT - can

Inductive vs Transductive learning

