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● Euclidean geometry 
○ Most commonly known and studied geometry 
○ Geometry of flat surfaces 

● 3 main properties that distinguish it from non-Euclidean geometry:
○ Parallel Postulate - Defines the nature of parallel lines 

■ Given a line and a point, there is only one other line that you can draw though the point that will be parallel to the 
original line. Non-Euclidean geometry doesn’t follow the parallel postulate

○ In Euclidean geometry, the interior angles of triangles always add up to 180 degrees
○ Shortest distance between 2 points is a straight line joining the two points.

● Most common non-Euclidean geometries - spherical geometry, elliptic geometry and hyperbolic geometry
● Image, text, audio, video data fall under euclidean data
● Arbitrary structured graphs fall under the category of non-Euclidean data

Example - A non-inflated balloon is a flat object governed by Euclidean geometry. Now inflate the same balloon, its surface is no longer 
flat, we need non-Euclidean geometry to define it. 

Euclidean vs non-Euclidean Geometry



Arbitrary structured graphs and manifolds are ubiquitous and form the backbone of several real-world application

Graph-structured data



Traditional approaches for modeling graphs

Graph embedding techniques - 

● Convert graphs into euclidean form and use traditional 
ML, DL models 

● Employs a class of graph pre-processing techniques, 
turn a graph into a computationally digestible format for 
the ML model while trying to preserve graph structure 
and data

● Some of these techniques:
○ DeepWalk [link]
○ Node2Vec [link]
○ Graph2Vec [link]
○ Large-scale Information Network Embedding 

(LINE) [link]
○ Structural Deep Network embedding (SDNE) 

[link]

Pitfalls of traditional techniques

These approaches rely on summary graph statistics (e.g. degrees 
or clustering coefficients), kernel functions, or hand designed 
features to measure local neighborhood structures.

1. Expensive and Inflexible - Use Hand designed features, 
can’t dynamically adapt to heterogeneous graphs with 
different types and sizes

2. Not generalisable (transductive) across problem statements 
and application domains or even new graphs 

3. Scalability - Many random walks approaches use shallow 
models that can’t scale well to more complicated and 
large-scale graphs

4. Compromise on the rich topological relationships in the graph

5. Computationally inefficient - No parameter sharing between 
nodes 

 

https://arxiv.org/abs/1403.6652
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf
https://arxiv.org/abs/1707.05005
https://arxiv.org/abs/1503.03578#:~:text=The%20algorithm%20is%20very%20efficient,the%20LINE%20is%20available%20online.
https://www.kdd.org/kdd2016/papers/files/rfp0191-wangAemb.pdf


Representation learning methods like deep learning can overcome each pitfall 

Main idea is to be able to process the graph as it is, in its original form along with its rich structural information without any conversions. 

Desirable properties for a neural network layer that can process a graph:

● Computational and storage efficiency  (requiring no more than O(V + E) time and memory);
● Fixed  number of parameters (independent of input graph size);
● Localisation  (acting on a  local neighbourhood  of a node);
● Ability to specify  arbitrary importance  to different neighbours;
● Applicability to  inductive problems  (arbitrary, unseen graph structures).

 

Why deep learning over graphs? Taking inspiration from CNNs



Geometric Deep Learning 

Generalisation of deep learning to non-Euclidean data, using deep neural networks to model arbitrary structured graphs and manifolds

Layer wise forward propagation - in the form of neighbourhood aggregation for each node in the graph 
Use some form of message passing to aggregate information from the neighbours and use the inter-node relationships 

Geometric deep learning and Graph Neural Networks 



Similarity with CNNs



Graph Convolutional Network 

Given Graph G = (V, E)
Input:  Input feature matrix X (a N x D feature matrix)

Adjacency Matrix - A ∈ RNxN containing the graph structural information
Output: Z, NxF feature matrix where F is the number of output classes 

Layer wise propagation rule: 

1. Self Loop 
2. Normalization - each node will have 

different number of neighbours, So 
normalise A by taking (D-1 A) where 
D is the diagonal node degree 
matrix. 



Graph Convolutional Network 

Successive application of filters of this form then effectively convolve the Kth-order neighborhood of a node, 
where k is the number of successive filtering operations or convolutional layers in the neural network model.





Datasets and Results

 

Graph Convolutional Network 



Pytorch Implementation  

https://github.com/tkipf/pygcn

Layers.py 

Graph Convolutional Network 



models.py

Graph Convolutional Network 



Illustrative example of power of GNNs - Zachary’s 
karate club network 

This graph contains 34 nodes, connected by 154 (undirected and 
unweighted) edges. Every node is labeled by one of four classes.

Training setting 

● Semi-supervised learning, taking 1 labeled sample per 
class 

● Use a 3 layer GCN, randomly initialised weights

Figure 4 shows how the GCN can learn powerful feature 
embeddings for the nodes. 

It separates the 4 communities using minimal supervision and the 
graph structure alone. 

Graph Convolutional Network 



Induction 

● “Induce” rules, characteristics and patterns from the data to learn a model that will work on new inputs
● Result of inductive learning is a function that maps inputs to outputs
● Get good generalisation on unseen samples 

Transduction 

● Use the training data to make accurate predictions on the specified set of unlabelled instances
● It streamlines and focuses the process for a small set of target instances instead of trying to build a ‘general’ or universal model.

“When solving a problem of interest, do not solve a more general problem as an intermediate step. Try to get the answer that you really 
need but not a more general one.” - Vladimir Vapnik 

GCN - Transductive approach, train-test data are parts of the same graph 
GAT - Can be used for Inductive learning, Eg. on the PPI dataset: train-test data are 2 separate graphs 

GCN - can’t have directed edges and edge features
GAT - can 

Inductive vs Transductive learning


