A Tutorial on Geometric Deep Learning & Graph Neural Networks

Semi-Supervised Classification with Graph Convolutional
Networks

Thomas N. Kipf, Max Welling (ICLR 2017)

By Prachi Garg, Vision for Mobility Reading Group
September 9, 2020

https://arxiv.org/search/cs?searchtype=author&query=Kipf%2C+T+N
https://arxiv.org/search/cs?searchtype=author&query=Welling%2C+M

Euclidean vs non-Euclidean Geometry

e Euclidean geometry
o Most commonly known and studied geometry
o Geometry of flat surfaces
e 3 main properties that distinguish it from non-Euclidean geometry:
o Parallel Postulate - Defines the nature of parallel lines
m Given a line and a point, there is only one other line that you can draw though the point that will be parallel to the
original line. Non-Euclidean geometry doesn’t follow the parallel postulate
o In Euclidean geometry, the interior angles of triangles always add up to 180 degrees
o Shortest distance between 2 points is a straight line joining the two points.
e Most common non-Euclidean geometries - spherical geometry, elliptic geometry and hyperbolic geometry
Image, text, audio, video data fall under euclidean data
e Arbitrary structured graphs fall under the category of non-Euclidean data

Example - A non-inflated balloon is a flat object governed by Euclidean geometry. Now inflate the same balloon, its surface is no longer
flat, we need non-Euclidean geometry to define it.

Graph-structured data

Arbitrary structured graphs and manifolds are ubiquitous and form the backbone of several real-world application

A lot of real-world data does not “live” on grids 5
(o o = :university
‘ Mikhail Baryshmlmm’ Vaganova Academy J ﬁ/ﬁ‘\oﬂ

Social networks I s v . ;
Citation networks R g
Communication networks \Va Knowledge graphs | Sokpin | L°
Multi-agent systems] \’H fA

® & Xg ® ——]YN\/U\H/Y ¢

o . ® | S & GRS
® N
.. ® n o* \ Molecules
° o " ®
bod °
Y g L
® g

Protein interaction
networks

Road maps

Traditional approaches for modeling graphs

Graph embedding techniques -

e Convert graphs into euclidean form and use traditional
ML, DL models

e Employs a class of graph pre-processing techniques,
turn a graph into a computationally digestible format for
the ML model while trying to preserve graph structure
and data

e Some of these techniques:

DeepWalk [link]

Node2Vec [link]

Graph2Vec [link]

Large-scale Information Network Embedding

(LINE) [link]

o Structural Deep Network embedding (SDNE)
link

o O O O

Pitfalls of traditional techniques

These approaches rely on summary graph statistics (e.g. degrees
or clustering coefficients), kernel functions, or hand designed
features to measure local neighborhood structures.

1. Expensive and Inflexible - Use Hand designed features,
can’t dynamically adapt to heterogeneous graphs with
different types and sizes

2. Not generalisable (transductive) across problem statements
and application domains or even new graphs

3. Scalability - Many random walks approaches use shallow
models that can’t scale well to more complicated and
large-scale graphs

4. Compromise on the rich topological relationships in the graph

5. Computationally inefficient - No parameter sharing between
nodes

https://arxiv.org/abs/1403.6652
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf
https://arxiv.org/abs/1707.05005
https://arxiv.org/abs/1503.03578#:~:text=The%20algorithm%20is%20very%20efficient,the%20LINE%20is%20available%20online.
https://www.kdd.org/kdd2016/papers/files/rfp0191-wangAemb.pdf

Why deep learning over graphs? Taking inspiration from CNNs

Representation learning methods like deep learning can overcome each pitfall
Main idea is to be able to process the graph as it is, in its original form along with its rich structural information without any conversions.
Desirable properties for a neural network layer that can process a graph:

Computational and storage efficiency (requiring no more than O(V + E) time and memory);
Fixed number of parameters (independent of input graph size);

Localisation (acting on a local neighbourhood of a node);

Ability to specify arbitrary importance to different neighbours;

Applicability to inductive problems (arbitrary, unseen graph structures).

Geometric deep learning and Graph Neural Networks

Geometric Deep Learning
Generalisation of deep learning to non-Euclidean data, using deep neural networks to model arbitrary structured graphs and manifolds

Layer wise forward propagation - in the form of neighbourhood aggregation for each node in the graph
Use some form of message passing to aggregate information from the neighbours and use the inter-node relationships

Similarity with CNNs

Single CNN layer

with 3x3 filter: h
0

by -
O\‘Q'/O Update for a single pixel:
O (5 O « Transform messages individually W ;h;
1 ‘\O » Add everythingup) . W;h,
O (5 h;

h; € RY are (hidden layer) activations of a pixel/node

Full update:
h{™ = (W' + W'n{ +--- + W'n{)

* slide from Thomas Kipf, University of Amsterdam

Graph Convolutional Network

Given Graph G = (V, E)
Input: Input feature matrix X (a N x D feature matrix)

Adjacency Matrix - A € RMN containing the graph structural information
Output: Z, NxF feature matrix where F is the number of output classes

FH — AU AN

f(H(l) A) = (H(l)W(l))

Layer wise propagation rule:

N =~

Self Loop A=A+1Iy U+ — U(D—%AD—%H(Z)W(D)
Normalization - each node will have)

different number of neighbours, So
normalise A by taking (D' A) where
D is the diagonal node degree
matrix. p-34p-3

Graph Convolutional Network

Hidden layer Hidden layer
Q) (o
o o
< o <o
o—® o °
o (<]
Input " W = Output
el o
o 9 ° L=l
i ° ¢ RelU . RelLU \
< o M b ¢ —s{_]—» b 2 —{_locs] ® °
® o) ° - o
o ® o * o o a
o ° g o
o el
o o
*—¢ ® o
o« * « *
o (-]

Multi-layer Graph Convolutional Network (GCN) with first-order filters.

Successive application of filters of this form then effectively convolve the Kth-order neighborhood of a node,
where k is the number of successive filtering operations or convolutional layers in the neural network model.

o Node Classification: (Semi-supervised Learning) e Co-authorship Network

o Predict research area of unlabeled authors o Nodes: Authors, Edges: Co-authorship
o\ % N ~
@ () @ ?g)lly @ @ Sally /e
N f . i) \ / | %
Zb ol ?;’S:ysiCS) \ b L’Sa
/ \—/ Tom & \ @ @Tom @ \ :
=~/ Sam

© 0\ , @&\ .
) © @@/ () & \@/
A

i i) i)

Graph Convolutional Network

Datasets and Results

Table 1: Dataset statistics, as reported in Yang et al. (2016).

Dataset Type Nodes Edges Classes Features Label rate
Citeseer Citation network 3,327 4,732 6 3,703 0.036
Cora Citation network 2,708 5,429 7 1,433 0.052
Pubmed Citation network 19,717 44,338 3 500 0.003
NELL Knowledge graph 65,755 266,144 210 5,414 0.001

Table 2: Summary of results in terms of classification accuracy (in percent).

Method Citeseer Cora Pubmed NELL
ManiReg [3] 60.1 59.5 70.7 21.8
SemiEmb [28] 59.6 59.0 71.1 26.7
LP [32] 45.3 68.0 63.0 26.5
DeepWalk [22] 43.2 67.2 65.3 58.1
ICA [18] 69.1 5.1 73.9 23.1

Planetoid* [29] 64.7 (26s) 75.7 (13s) 77.2(25s) 61.9 (185s)
GCN (this paper) 70.3 (7s) 81.5 (4s) 79.0 (38s) 66.0 (48s)

GCN (rand. splits) 67.94+0.5 80.1+0.5 789+0.7 584+1.7

class GraphConvolution(Module):

Graph Convolutional Network
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907

Pytorch Implementation

def __init_ (self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init_ ()

https://github.com/tkipf/pygcn self.in_features = in_features
self.out_features = out_features

Layers.py self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:

self.bias = Parameter(torch.FloatTensor(out_features))
else:

self.register_parameter('bias', None)
self.reset_parameters()

def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)

def forward(self, input, adj):
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output

def __repr__(self):
return self.__class__._ name__ + ' (' \
+ str(self.in_features) + ' —> '\
+ str(self.out_features) + ')°'

i import torch.nn.functional as F
Graph COﬂVOlUtIOﬂG' Network from pygen.layers import GraphConvolution

class GCN(nn.Module):
models.py def __init_ (self, nfeat, nhid, nclass, dropout):
super(GCN, self).__init_ ()

GraphConvolution(nfeat, nhid)
GraphConvolution(nhid, nclass)

self.gcl
self.gc2

self.dropout = dropout

def forward(self, x, adj):

x = F.relu(self.gcl(x, adj))
x = F.dropout(x, self.dropout, training=self.training)
x = self.gc2(x, adj)

return F.log_softmax(x, dim=1)

Z = f(X, A) = softmax(A ReLU (AXW(O)) W<1>) .

Graph Convolutional Network

lllustrative example of power of GNNs - Zachary’s
karate club network

This graph contains 34 nodes, connected by 154 (undirected and
unweighted) edges. Every node is labeled by one of four classes.

Training setting

° Semi-supervised learning, taking 1 labeled sample per
class
° Use a 3 layer GCN, randomly initialised weights

Figure 4 shows how the GCN can learn powerful feature
embeddings for the nodes.

It separates the 4 communities using minimal supervision and the
graph structure alone.

1.0 1.0
L]
L]
05 05 °s
* e Bt °e
‘..’ L] o
00 %, 00 S
® e L] L4
cop® S=e._e
-
-0 -05
L 3
o
*
-10 -10
io o 50 5 10 1o o5 00 05 10
(a) Iteration 25 (b) Iteration 50
1.0 1.0 °
. . ¢
<
°
os| ™ os| ¢
o
0.0 0.0 .
© °
el
05 -05
. B
T 4 * .
° 7l 3 o
=¥ = 00 [10 =0 =05 50 o5 10
(c) Iteration 75 (d) Iteration 100
10 10 Y
3 L J LY
°
.
0s 05 °
.
o
00 00
.
-0.5 -0.5
°
L L]
-1.0 ° & -1.0 l' e . ‘

—05 0.0 05

(e) Iteration 200

10

-10

—05 0.0

(f) Iteration 300

05

Figure 4: Evolution of karate club network node embeddings obtained from a GCN model after a
number of semi-supervised training iterations. Colors denote class. Nodes of which labels were
provided during training (one per class) are highlighted (grey outline). Grey links between nodes

denote graph edges. Best viewed on a computer screen.

Inductive vs Transductive learning

Induction

e ‘“Induce” rules, characteristics and patterns from the data to learn a model that will work on new inputs
e Result of inductive learning is a function that maps inputs to outputs
e Get good generalisation on unseen samples

Transduction

e Use the training data to make accurate predictions on the specified set of unlabelled instances

e It streamlines and focuses the process for a small set of target instances instead of trying to build a ‘general’ or universal model.
“When solving a problem of interest, do not solve a more general problem as an intermediate step. Try to get the answer that you really
need but not a more general one.” - Vladimir Vapnik

GCN - Transductive approach, train-test data are parts of the same graph
GAT - Can be used for Inductive learning, Eg. on the PPI dataset: train-test data are 2 separate graphs

GCN - can’t have directed edges and edge features
GAT - can

